A second look at off-shore use of vertical-axis wind turbines
complex VAWT blade shapes at an unprecedented scale, but at acceptable cost.
VAWT blades must also overcome problems with cyclic loading on the drive train. Unlike horizontal axis wind turbines (HAWTs), which maintain a steady torque if the wind remains steady, VAWTs have two “pulses” of torque and power for each blade, based on whether the blade is in the upwind or downwind position. This “torque ripple” results in unsteady loading, which can lead to drive train fatigue. The project will evaluate new rotor designs that smooth out the amplitude of these torque oscillations without significantly increasing rotor cost.
Because first-generation VAWT development ended decades ago, updated designs must incorporate decades of research and development already built into current HAWT designs. Reinvigorating VAWT research means figuring out the models that will help speed up turbine design work.
“Underpinning this research effort will be a tool development effort that will synthesize and enhance existing aerodynamic and structural dynamic codes to create a publicly available aeroelastic design tool for VAWTs,” Barone said.
Needed: aerodynamic braking
Another challenge is brakes. Older VAWT designs did not have an aerodynamic braking system, and relied solely on a mechanical braking system that is more difficult to maintain and less reliable than the aerodynamic brakes used on HAWTs.
HAWTS use pitchable blades, which stop the turbine within one or two rotations without damage to the turbine and are based on multiple redundant, fail-safe designs. Barone said new VAWT designs will need robust aerodynamic brakes that are reliable and cost-effective, with a secondary mechanical brake much like on modern-day HAWTs. Unlike HAWT brakes, new VAWT brakes wwill not have actively pitching blades, which have their own reliability and maintenance issues.
VAWT technology: A long history at Sandia
The release notes that in the 1970s and 1980s, when wind energy research was in its infancy, VAWTs were actively developed as windpower generators. Although strange looking, they had a lot going for them: They were simpler than their horizontal-axis cousins so they tended to be more reliable. For a while, VAWTs held their own against HAWTs. Then wind turbines scaled up.
“HAWTs emerged as the predominant technology for land-based wind over the past fifteen years primarily due to advantages in rotor costs at the 1 to 5 megawatt scale,” Paquette said.
In the 1980s research focused more heavily on HAWT turbines, and many VAWT manufacturers left the business, consigning VAWTs to an “also ran” in the wind energy museum.
The winds of change have blown VAWTs’ way once more, however. Sandia says it is mining the richness of its wind energy history. Wind researchers who were among the original wind energy engineers are going through decades of Sandia research and compiling the lessons learned, as well as identifying some of the key unknowns described at the end of VAWT research at Sandia in the 1990s.
The first phase of the program will take place over two years and will involve creating several concept designs, running those designs through modern modeling software and narrowing those design options down to a single, most-workable design. During this phase, Paquette, Barone, and their colleagues will look at all types of aeroelastic rotor designs, including HVAWTs and V-shaped VAWTs. The early favorite rotor type is the Darrieus design.
In phase two researchers will build the chosen design over three years, eventually testing it against the extreme conditions that a turbine must endure in an offshore environment. In addition to rotor designs, the project will consider different foundation designs: Early candidates are barge designs, tension-leg platforms and spar buoys.
The project partners will work on many elements. Another partner, the University of Maine, will develop floating VAWT platform dynamics code and subscale prototype wind/wave basin testing. Iowa State University will develop manufacturing techniques for offshore VAWT blades and subscale wind tunnel testing. TPI Composites will design a proof-of-concept subscale blade and develop a commercialization plan. TU-Delft will work on aeroelastic design and optimization tool development and modeling. Texas A&M University will work on aeroelastic design tool development.
“Ultimately it’s all about the cost of energy. All these decisions need to lead to a design that’s efficient and economically viable,” said Paquette.