view counter

E.coli to serve as a future source of energy

We haven’t given them an ability to do something. They don’t gain anything here; they lose. The bacteria that we’re making are less competitive and less harmful because of what’s been removed.”

With sugar as its main power source, this strain of E. coli can now take advantage of existing and ever-expanding scientific processes aimed at producing sugar from certain crops, such as corn, Wood said. “A lot of people are working on converting something that you grow into some kind of sugar,” Wood explained. “We want to take that sugar and make it into hydrogen. We’re going to get sugar from some crop somewhere. We’re going to get some form of sugar-like molecule and use the bacteria to convert that into hydrogen.” Biological methods such as this (E. coli produce hydrogen through a fermentative process) are likely to reduce energy costs since these processes don’t require extensive heating or electricity,” Wood said. “One of the most difficult things about chemical engineering is how you get the product,” Wood explained. “In this case, it’s very easy because the hydrogen is a gas, and it just bubbles out of the solution. You just catch the gas as it comes out of the glass. That’s it. You have pure hydrogen.”

There also are other benefits. As might be expected, the cost of building an entirely new pipeline to transport hydrogen is a significant deterrent in the utilization of hydrogen-based fuel cell technology. In addition, there is also increased risk when transporting hydrogen. The solution, Wood believes, is converting hydrogen on site. “The main thing we think is you can transport things like sugar, and if you spill the sugar there is not a huge catastrophe,” Wood said. “The idea is to make the hydrogen where you need it.” Of course, all of this is down the road. Right now, Wood remains busy in the lab, working on refining a process that’s already hinted at its incredible potential. The goal, he said, is to continue to get more out of less. “Take your house, for example,” Wood said. “The size of the reactor that we’d need today if we implemented this technology would be less than the size of a 250-gallon fuel tank found in the typical east-coast home. I’m not finished with this yet, but at this point if we implemented the technology right now, you or a machine would have to shovel in about the weight of a man every day so that the reactor could provide enough hydrogen to take care of the average American home for a 24-hour period. “We’re trying to make bacteria so it’s doesn’t require 80 kilograms; it will be closer to 8 kilograms.”

view counter
view counter